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A LIMITED SPEECH RECOGNITION SYSTEM

ABSTRACT

LISPER, a program designed for limited speech recognition, learns
to identify utterances as one of a limited input message set.
Functions of the raw spectral data are transformed into sequences
of states (features) in order to normalize for word onset time,
speaking rate, and speaking rhythm. State transition thresholds
are normalized for speaking level, and a hysteresis region is
employed about decision thresholds to reduce the sensitivity of
the system to noise. A feature sequence need not be consistently
correct because the recognition algorithm makes use of redundancy
to identify the most probable message. Features related to tense-
lax, sibilant, fricative, continuant, several place-of-articulation
features and a stress feature are included in a set of "linguistic"
features used for recognition. Another set of non-linguistic
features was also tested. Recognition scores approach 97% correct
after three rounds of training on a 54 word vocabulary for both
sets of features.
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I. INTRODUCTION

This report describes the results of a successful study for the
National Aeronautics and Space Administration on the feasibility
of a voice link with a computer. LISPER, a prototype Limited
Speech Recognition system, was bullt to demonstrate and experiment
with the set of techniques for speech recognition described below.
The goals of the implementation were to provide a system which

would:

1) be able to identify an utterance as one of a limited set
of possible input messages. Different message sets used
contaln approximately 50 to 100 items and consist of
words or phrases less than 2 seconds long spoken in iso-
lation.

2) allow an individual user to "train" the system. LISPER
learns separately the characteristics of an input message
set as spoken by each individual to use the system.

3) allow maximum flexibility for data access and system
modification. For this reason LISPER was built in an
extended LISP system (McCarthy, 1964) (Bobrow, Murphy
and Teitelman, 1968). This decision allowed an easy
transfer of the system from a DEC PDP-1 to an SDS 94¢

computer.

This LISPER system has been used as both a research tool for
exploring characteristics of speech, and a prototype of a train-
able speech pattern recognition system.
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Any pattern recognition system must have three basic components:
preprocessing hardware to extract a representation of the input;
programs utilizing this raw data to compute propertles of the un-
known input (data reduction); and a recognition or decision algo-
rithm. Figure 1 shows a block diagram of the organization of the
LISPER system. The input speech signal may be obtained from either
a microphone or tape recorder. The basic parameters of the input
are extracted by a spectrum analyzer which consists of a pre-emphasis
network followed by nineteen bandpass filters. Bandpass filter
outputs are rectified, low-pass filtered, sampled, converted into
logarithic units, and stored on digital tape, or in the memory of
the computer.

The spectral representation of a word as derived from our input
system consists of 200 spectral samples, corresponding to 2 sec-
onds of speech material. A spectral sample consists of the out-
puts of the 19 bandpass filters, all sampled at a particular
instant of time. A filter output, in log units, is an integer
ranging from 0 to 63, covering a 45 decibel range of intensity.
Design considerations for the input system are discussed in Sec-
tion II.

The use of the logarithm of the short-time spectrum is well estab-
lished as one approach to speech analysis (see, for example,
Flanagan, 1965), and has often been used as the basis for recog-
nition programs. The principal contributions of this research
have been the development of a set of algorithms for extracting
features which characterize speech utterances, and coupling this
set with a recognition algorithm capable of high quality word
identification in the presence of redundant, inconsistent, or
incorrect information from these properties. The recognition
algorithm does not directly utilize the spectral data, nor is an
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intermediate phonetic (or phonemic) transcription of the word pro-
duced. We discuss below some problems of these two approaches and

indicate how a number of these problems have been circumvented by
techniques used in LISPER.

Our system has been extensively tested, and recognition scores
have been obtained on three vocabularies with three different
speakers. Typical of our results is attainment of recognition
scores that approach 97% correct on a 54 word vocabulary after
three rounds of training for a single speaker. Experiments indi-
cate that our recognition system is very successful in handling a
moderate amount of additive noise. Our recognition scores compare
favorably with those of other investigators (Gold, 1966; Denes and
Mathews, 1964; Dudley and Balashek, 1958; Davis et al., 1952).
However, unlike some of these, the LISPER system is not intended
to be used simultaneously by multiple speakers, and a new speaker
must train the system to the characteristics of his voice.

The techniques used in LISPER can best be appreciated by first
exploring some problems involved in identifying a speech utterance
on the basis of the 19 x 200 array representing a 2 second sampling
of its energy spectrum. Pattern recognition schemes operating on
data of this dimensionality are theoretically tenable (Sebestyen,
1960), but only if repetitions of words cluster properly in the
resultant vector space. It 1s by now well-known that speech spectral
patterns as initially stored in a computer do not cluster accord-

ing to the word spoken. Some of the reasons for thls are:

1. The range of intensities encountered will vary because
the overall recording level is not fixed. Recording
level depends on vocal effort and the distance of a
speaker from the microphone.
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An unknown word 1is difficult to register at the same
place within 200 spectral samples because word onset
time is not a simple feature to detect reliably. For
example, initial voiceless fricatives may be missed,
prevoiced stops are hard to treat consistently, etc.

The total duration of a word is highly variable. An
increase in speaking rate is not manifested by a linear
compression of the time dimension. Final syllables are
often prolonged. Some transitions (for example, the
release of a stop consonant) are not as greatly affected
by changes 1n speaking rate as the steady-state portions
of vowels. If shortened enough, vowels are likely to be
reduced and consonants may not be carefully articulated,
with resultant losses in spectral distinctiveness.

A speaker attempts to generate an utterance so that it

has a particular set of perceptual attributes (or features).
We do not know in detail what the acoustic correlates of
these attributes are. There is a great deal of variation
allowed in the acoustic properties of the signal that will
still give rise to the same utterance. There is also
sufficient redundancy in the message to permit a speaker
to leave out certain attributes entirely. For example,
the degree of stress placed on a syllable wlill determine
the extent to which the vowel may be reduced (Lindblom,
1963). Consonants in unstressed syllables may contain
less frication noise, a weak stop burst release, or in-
complete stop closure. Vowels may be nasalized in nasal
environments. The substitution of one incomplete gesture
for a consonant cluster is also common in unstressed
syllables of natural speech. None of these effects would
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necessarily produce word recognition difficulties if they
appeared consistently in the data. Unfortunately, they
do not.

If a speaker is instructed to speak distinctly and not
rapidly, some surprising and unfortunate variability in

speaking habits has been experimentally detected. 1In an
attempt to help the system, our speakers released final
stops, increased the length of some syllables, and arti-
culated unstressed syllables more carefully than they
would normally. Unfortunately, our speakers appear to
have found these speaking habits unnatural, and could not
remember from repetition to repetition exactly what they
had done to help. For example, final voiced stop releases
gave trouble by producing short vowel segments that varied
greatly in amplitude, and the words "four" and "core" were
sometimes pronounced as if they had two syllables.

Individual speakers have vocal tracts of different sizes
and shapes. It 1is physically impossible for two speakers
to produce identical spectra for a given phone or word.

A speaker makes an articulatory gesture that we, as lis-
teners, interpret, possibly with respect to our knowledge
of the spectra that he is capable of producing (Gerstman,
1967). The nature and importance of the normalization
process of a listener are not well understood.

Different speakers have articulatory habits (idiolects)
that may be quite distinct. Habits include the timing
and dynamics of articulatory movements and the features
that a particular speaker employs to manifest a phonemic
distinction. Whether recognition difficulties can be
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attributed to individual speech habit structures is not
known. Very little quantitative data are available on

the characteristics that distinguish speakers (Kersta,
1962).

The variability of the spectrum of a word has led to the search

for data reduction techniques to eliminate irrelevant information.
An approach favored by several lnvestigators has been to develop
rules for detecting phonemes (Fry and Denes, 1958; Martin et al.,
1966; Reddy, 1967). We believe that phoneme recognition is a much
more difficult problem than word recognition because it presupposes
a good understanding of the cues that distinguish phonemes in arbi-
trary phonetic environments. For example, allophones of the
phoneme /p/ may be:

. normally aspirated, as in the word "peak" [phik]
weakly aspirated, as in the word "supper" [sap:zr ]
non-aspirated, as in the word "spin" [spIn]
non-released, as in the word "top" [thaﬁ1]

& ow N
PR

There 1s no need for a word recognition program to attempt to
group this disparate set of physical signals together into one
phoneme. However, to the extent that algorithms for deriving

a detailed phonetic-feature description of an utterance can be
found, they can be of considerable help to a practical word recog-
nition system. Examples of feature approaches that are relevant

include the work of Hughes (1961), Hemdal and Hughes (1964), and
Gold (1966).

We have implemented a number of programs which characterize
phonetic features of words. These features are defined and com-
pared with the work of other investigators in Section III. Fea-
tures that have been implemented include (1) voiced, (2) strident,
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(3) fricative, (4) stop-burst, (5) nasal, (6) [r}like, (7) stri-
dent-stop, (8) [i]-1like, (9) [al-like, (10) [ul~like. For our
purposes, a feature 1s defined to be a function of sampled time
having a range limited to a small number of distingulshable states.
State transition thresholds are normalized for speaking level, and
a hysterisis region about the threshold reduces the sensitivity

to noise. The time dimension is removed by transforming the time
function into the sequence of states that 1s produced by the un-
known word. Thils reduces the information content in the represen-
tation of the word, automatically has the effect of normalizing
for speaking rate and defines word onset as the first change of
state. Several properties are used exclusively to describe the
stressed syllable. We have been able to segment words into syl-
lables, primarily on the basis of changes in total signal energy.
The stressed syllable has been identified with the aid of a func-
tion that computes an approximation to the perceived loudness of

a vowel. The features of the stressed syllable are less likely

to be affected by the natural variability that characterizes the
speech process (Stevens, 1968), and therefore are good properties

for use in recognition.

For each new utterance, the recognition algorithm decides which
previously seen message this one is most like. The algorithm is
related to a maximum likelihood decision in which the state se-
quences for each feature independently suggest for recognition
those input messages which have been previously characterized by
that sequence during training. The detalls of this decision pro-
cedure are described in Section V. The recognition algorithm

is capable of high quality word identification in the presence of
incorrect or inconsistent characterizations from many of the fea-
tures.
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It should be emphasized that all of our feature definitions are
relatively simple-minded. They do not produce results that corres-
pond to a phonetic transcription of 2 lingulst. Some features

work reliably in some phonetic environments, and not at all in
others. The features have the single purpose of providing suffi-
clent information about the invarlant characteristics of the input
message for the recognition algorithm to operate successfully.

It should be clear that we believe a pattern recognition algorithm
cannot succeed with data of the type provided by the input system
unless the algorithm deals explicitly with some of the problems
mentioned previously. In particular, amplitude normalization,

word onset time, and speaking rate problems are likely to produce
more variability than any nalive pattern learning program can
successfully treat. Pattern recognition programs that attempt to
overcome these difficulties have been described in the literature
(Schroeder, 1968; Shearme and Leach, 1968; Denes and Mathews, 1961;
Dudley and Balashek, 1958; Davis et al., 1952).

The feature approach that we have taken provides a good working
solution to these three problems. In the latter stages of the
research, we formulated a set of non-linguistic features to be
used as a basis for comparison with the features described in
Section IV. The non-linguistic properties involved simple sums
and differences of filter outputs. The results of the comparison
show that, for a single speaker, pattern detecting properties
that are unmotivated by linguistic considerations (but carefully
chosen) work very well, approaching 97% correct in a 54 word
vocabulary after 3 training rounds. These scores are roughly
equivalent to our previous results. The reasons for thlis success
are discussed in Section VI.

-10-
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IT. THE INPUT SYSTEM

A block diagram of the hardware that 1s employed to convert acous-
tic waveforms into a digital representation is shown in Fig. 2.

Up to two seconds of speech is entered into the computer from a

live microphone or tape recorder. A pre-emphasls filter having a
frequency response that increases by 6 db/octave (3 db up at 740 Hz)
is introduced so that the full dynamic range of each bandpass filter
can be utilized. This network is similar to the inverse of the
long~term average spectra for a male speaker.

The 19 channel filter bank of Fig. 2 approximates the short-time
power spectrum of the speech signal. The filter characteristics
have been selected to preserve the significant acoustic properties
of an adult male speaker. In the frequency range up to 3000 Hz,
15 filters are arranged to be spaced uniformly and to have equal
bandwidths. This is the approximate frequency range encompassed
by the first three resonances of the vocal tract (Peterson and
Barney, 1952). An even spacing of filters on a linear frequency
scale was chosen to enable the hardware to share poles from adja-
cent filters.

During normal utterances of male speakers, the fundamental fre-
quency rarely exceeds 180 Hz, and is usually in the range

80-150 Hz (Fairbanks, 1940). For volced sounds, the spectrum
analyzer should provide a representation of the spectral envelope,
and this representation should be relatively uninfluenced by
changes in fundamental frequency. These considerations led to

the selection of 360 Hz as an appropriate filter bandwidth in the
range up to 3000 Hz. With such a bandwidth there are always at
least two harmonics of the fundamental within a given filter, and
no more than four such harmonics. Thus changes in the pattern of

-11-
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filter outputs for a voiced sound due to changes in fundamental
frequency are small.

In order to provide an adequate representation of the spectrum
envelope, it was decided to space the filters every 180 Hz in the
frequency range up to 3000 Hz. Once the desirability of filters
with 360 Hz bandwidths has been established, it becomes clear that
relatively few filters are required to cover the speech band. If
filters were placed every 90 Hz instead of every 180 Hz, it would
not be possible to locate the centroid of an energy concentration
with significantly greater precision because outputs from adjacent
filters have energy from several harmonics in common.

The frequency range above 3000 Hz is of importance primarily for

carrying information about the nolise-like components of speech--

the frication noise for stop and fricative consonants. Fine fre-
quency resolution is not as important (Heinz and Stevens, 1961).

The frequency range from 3000 to 6500 Hz is covered by four wide

bandwidth filters. Filter center frequencies and bandwidths are

listed in Table 1.

Four-pole Lerner filters (Lerner, 1963) are used to realize the
bandpass characteristics because (1) adjacent filters can share
poles, (2) the phase response is linear over the passband of the
filter, and (3) the slope of the phase response, i.e., the delay
time, is the same for each of the filters so that spectral com-
ponents of a signal appear simultaneously at the outputs of the
filter channels. It has been shown by Stevens (1968) that the
relative timing of energy onsets in different frequency regions
may be an important cue for the differentiation of place-of-arti-
culation for stops. The set of Lerner filters will preserve this
type of information. Fig. 3 plots the measured frequency response
of each bandpass filter.

-13-
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Fllter Center Lower Higher Band

No. Freq. Cut-0ff Cut-0ff Width
cps cps cps cps

1l 260 80 4uo 360
2 huo 260 620 360
3 620 hyo 800 360
y 800 620 980 360
5 980 800 1160 360
6 1160 980 1340 360
7 1340 1160 1520 360
8 1520 1340 1700 360
9 1700 1520 1880 360
10 1880 1700 2060 360
11 2060 1880 2240 360
12 2240 2060 2420 360
13 2420 2240 2600 360
14 2600 2420 2780 360
15 2780 2600 2960 360
16 3260 2960 3560 600
17 3980 3560 4yoo 840
18 bguo by00 5480 1080
19 6020 5480 6560 1080

TABLE 1. List of Filter Center Frequencies and Bandwldths

—14-
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The output of a bandpass filter is first full-wave rectified and
then low-pass filtered. The averaging time for the low-pass filters
should be sufficiently long that there are no appreciable fluctua-
tions in the outputs of the channels within a period of the funda-
mental frequency because fluctuations are not easy to distinguish
from significant spectral changes. On the other hand, the aver-
aging time should be sufficiently short so that rapld changes 1n
level and spectral shape associated with stop and nasal consonants
can be detected. These considerations led to the selection of a
compromise averaging time on the order of 10-20 msec.

The weighting function (i.e., the impulse response) assoclated with
the low-pass filter should have as short a tail as possible so that
only events over the 10-20 msec interval are averaged. The Bessel
filter provides a non-ringing impulse response with a tail that

is relatively short. A four-pole Bessel low-pass filter with the
characteristics indicated in Fig. 4 terminates each of the 19 fil-
ter channels.

The output of a filter is sampled every 10 msec, using the multi-
plexer and analog-to-digital converter of the computer. Thus,
each 10 milliseconds the computer extracts 19 numbers (integers
ranging from 0 to 1023) which represent the average energy in

19 frequency bands for the previous 10 milliseconds. In the com-
puter, the logarithm of this energy is computed. Each sample 1is
transformed to an integer between 0 and 63, covering a 45-decibel
range of intensity.

An example of the spectrum of the word "store", as derived by the
input system, is shown in Fig. 5. Note that the resolution of
individual formant peaks is poor with these filters (e.g., the
first and second formants of [0“] in "store" do not produce

-16-~
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individual peaks). The choice of filters represents a commitment
to a non-formant-tracking approach to speech processing. It 1is
based on the hypothesis that the human perceptual apparatus does
not attempt to resolve individual formant tracks, but rather is
sensitive to gross changes in energy concentrations. Thus, when
two formant frequenclies come close, as in a back vowel, only one
broad energy concentration is seen by our input system and, pre-
sumably, by the peripheral audltory system as well. An approxi-
mation to the frequency locations of formants could be recovered
from the spectral data through an analysis-by-synthesis procedure
(Bell, et al., 1963) 1f desired.

In working with the input system, it has become evident that two
qualifications should be made concerning its design. A finer fre-
quency resolution would be of some help in the frequency region
from about 300 Hz to 1200 Hz. Additional filters (or a modifica-
tion in the spacing of the maximum of 19 filters to which we are
limited by the multiplexer hardware) would hopefully improve the
ability of the system to detect sudden movements 1in energy con-
centrations more reliably. The second design improvement that we
would include in a second-generation input system would be a
shortening of the averaging time of the low-pass filters by about
30-40 percent. At present, sudden changes in energy concentrations
are indicated with insufficient temporal resolution. This latter
improvement might be accompanied by an increase in the digital
sampling rate from 100 spectra per second to about 200 spectra
per second.

A detailed description of the electronic circuits of our input

system is contained in Appendix A. Thils system was deslgned and
built by K. N. Stevens and G. von Bismarck (1967).
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III. PROPERTY EXTRACTION SYSTEM

An unknown word is represented in the computer by a matrix of in-
tegers (filter number vs. sampled time vs. log-amplitude). The
purpose of a property or feature extraction system is to reduce
the information content of the input signal to a level that makes
i1t possible for the decision or recognition algorithm to operate
reasonably. The critical thing is that the information eliminated
should be information which is irrelevant to the decision that the
recognition algorithm must make.

The principal result of this research has been the development of
a set of feature definitions which characterize speech spectra in
a way that makes recognition possible. The feature definitions
have evolved through the course of the research and represent a
gradual learning by the researchers of the relevant characteris-
tics of speech as seen by the input system. The approach has

been to make use of the present day body of knowledge about acous-
tic phonetics and the distinctive feature approach to phonological
description (Jakobson, et al., 1963; Chomsky and Halle, 1968). A
similar orientation is exemplified by the work of Hughes and Hem-
dal (1965).

The properties of speech which are used by the recognition program
are based on the energy measures derived from the input system.
The output of each filter is an elementary function of the speech
input signal. We use the notation Fp(i) for the output of filter
n at sample interval i; that is F1(i), F2(1), ... , F19(1i) are
used for the output of filters 1 through 19 at sample interval i.
The filter number n ranges from 1 for the low frequency filter to
19 for the high frequency filter; and 1=1 for the first sample
interval to 1=200 for the last time sample of a two second utter-
ance.
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More complicated functions of the speech input signal can then be
defined in terms of these elementary (base) functions, Fl, ... F19,
in the LISP system. For example, the following function has been
found to correlate with perceived loudness, independent of vowel
quality.

Loud(i) = F1(i) + F2(i) + F3(1) + Fiu(1i) + F12(1i) - F7(1)

The output of the seventh filter is subtracted from the sum of the
first four filters and filter 12 to compensate for the fact that
low vowels are inherently more intense when produced with the same
vocal effort. We will indicate later how a modified version of
this function Loud(i) can be used to correct for differences in
recording level between repetitions of the same word.

Loud(i) is useful in reducing the information that must be pro-
cessed by the decision algorithm, since it helps to normalize the
input with respect to a variable which is not important to recog-
nition, namely, the recording level of the input signal. We de-
scribe in this section a number of techniques which are used to
reduce the information content of the incoming signal in ways that
preserve the invariance of message identity over ranges of para-
meters which are irrelevant to the decision about the ldentity of
the message.

One important way we have found to reduce the information content
of a function is to reduce its range of values. Thus, for example,
we may define a reduced information property Amp2(i) based only

on the output of filter F2.
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Amp2(1)=+1 1f F(2) > 4o
0 if F(2) > 20
-1 otherwise

Amp2(1i) is thus a 3 valued function, where we ascribe no signifi-
cance to the names of the three values. As described later, a set
of non-linguistic threshold properties similar to Amp2 can be used
as a basis for recognition. However, we note the following prob-
lem. If the signal in F2 were varying around either of the
thresholds, 20 or 40, then there would be 1little significance to
the changes of state between -1 to 0, or O to 1; they probably
would be caused more by noise than a real (significant) variation
in the input signal.

To make such properties less sensitive to noise, we 1lntroduce a
hysteresis region around the thresholds. This helps to lnsure
that a change of state is significant. A revised definition of
Amp2(1) is

Amp2(1)

+1 if [F2(1) > 40] or [F2(1i) > 37 and F2(i-1) = 1]
0 if [F2(1) > 20] or [F2(1i) > 17 and F2(i-1) # -1]
-1 otherwise

Most of the features we use are functions of sampled time having

a range limited to a small number of distinguishable states. These
functions are very sensitive to slight changes in time scale and
origin; however, these variations in the data are irrelevant for
recognition. Therefore, time dimenslon is removed from a feature
by transforming the time function into a sequence of transitions

of states, as 1s illustrated in the following example:
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i 123456789 ...
Voice(i) 001111110 ...
Voice = c10...

This transformation reduces the amount of data that must be mani-
pulated by the program. Due to the nature of spoken language, the
exact time when features change value will vary from repetition to
repetition of the same word, but the essence of the word remains
in the sequence of state transitions of an appropriate set of
features.

No information about the word onset time, speaking rate, and
speaking rhythm can be recovered from the sequence unless these
parameters have an effect on the actual states that are reached.
To this extent, recognition will be unperturbed by variations in
word onset time, speaking rate, and speaking rhythm.

A problem that arises from collapsing the time dimension is an
inability to tell whether two features were 1n specific states at
the same time. Time removal assumes that features independently
characterize a word. This is obviously false. A clear example

is provided by the words "sue, zoo" which can only be distinguished
by knowing whether the strident 1is simultaneously voiced, or not.
It is possible to retain some timing information by the inclusion of
features containing states which are entered only upon simultaneous
satisfaction of two condltions, or features that count the number
of time samples between temporal landmarks in the data and change
state if the count exceeds a threshold.

For example, the state "-1" corresponds to volceless segments in

the definition of the spectral quality [r]-like(i). This is used
to indicate in which voiced segment an [r]-like phone occurred.
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The sequence produced for the word "ratio" should be -1, 1, 0, -1,
0, =1. A more detalled localization of the [r] is probably not
necessary and would certainly be more difficult. We found that very
gross timing information 1is satisfactory for recognition. Two
features are used to make a preliminary division of a word or
message into one or several segments. One feature divides a word
Into voiced and voiceless segments and the other divides it into
syllables. Voice(i) and Syllable(i) are then used to introduce

time markers in the definitions of other features.

Time removal achieves the most significant reduction in the infor-
mation content of the raw data. Information content is also re-~
duced when the intensity and filter number (frequency) dimensions
are transformed into changes of state of selected functions. The
information retained by these transformations can be increased by
(1) an increase in the number of distinguishable states, or (2)

an increase in the number of feature detectors.

Information manipulable by the recognition algorithm can also be
obtained by mapping the value of a function at a particular time
interval into a small range of values. For example, features
which classify the vowel quallty of the stressed syllable of an
utterance into one of 10 categories have been found to be very
useful in recognition. The stressed syllable 1s identified with
the aid of a function Loud(i) that computes an approximation to
the perceived loudness of a vowel. These features of a stressed
syllable are less likely to be affected by the natural variability
that characterizes the speech process (Stevens, 1968).

Three types of information are available for evaluating and re-
defining features. The primary data source is a set of computer
print-outs of the spectra produced by the 54 word vocabulary of
Gold (1967) repeated once by 2 speakers. The word 1list appears
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in Table 2; an example of the computer printouts 1s shown in
Fig. 5 earlier.

A feature definition that appears to work for this data is tested
on 9 other recordings of the same word list by the two speakers.
One result of this test 1s a set of recognition scores: X percent
correct identification for each repetition of the word list. This
is usually not a sufficiently sensitive measure of feature perfor-
mance, so we also obtain a printout of the feature characterization
of each word in each repetition of the vocabulary for all feature
definitions. Examples of feature characterization for the Gold
vocabulary are contained in Appendix B.

From thils information we might find that, for example, the feature
Voice(i) produces a sequence 01010 for some repetitions of the
word "divide". Each "1" represents a voiced segment and each "O"
represents an unvoiced segment. Reference to the original spec-
tral printout for "divide" suggests that the problem is a weakly
voiced [v]; sometimes the voicing in [v] falls below our threshold
setting, sometimes not.

At this point we would lower the voicing threshold and observe the
results. We might find that a vocabulary item with two voiced
segments (e.g. "compare") now sometimes produces the incorrect
sequence 010, indicating only one voiced segment. A simple solu-
tion, threshold adjustment, is lncapable of making the volcing
definition conform to our linguistic intuition. More importantly,
the simple adjustment does not produce consistent results.

However, our recognition algorithm is powerful enough to deal

with ambiguity in the volcing assignment of some vocabulary items,
and thus we did not develop a more sophisticated voicing algorithm,
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We made no attempt to use rate of voicing onset, offset, time be-
tween burst and energy build-up for stops, etc., as additional

cues to a better feature definition. In all the features used,

the ambiguity remains at a level tolerable to the recognitlion algo-
rithm. +fhe redundancy of the feature definitions allows recog-
nition of variations of the same message.
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IV. RECOGNITION ALGORITHM

Our recognition algorithm is a program that learns to identify a
word by associating the outputs of various property extractors
with that word. Durling learning, the vocabulary of words is pre-
sented a number of times, and information is accumulated about the
different ways that the speaker may pronounce each word. For
example, the result of the training procedure applied to the
feature sequence Voice after 5 presentations of the 4-word vocabu-
lary "one, two, subtract, multiply" might be:

Number of times

Word Sequence sequence occurred
one 010 5
two 010 5

subtract 01010 5

multiply 0101010 3

multiply 01010 2

The two versions of the word "multiply" exemplify a common problem.
No matter where we place threshold boundaries, there are some words
that are treated inconsistently by the feature detectors. Another
way of putting it is to say that there appear to be no absolute
boundaries along the dimensions we have chosen. The recognition
algorithm takes this fundamental limitation into account and makes
a best guess given the imperfect nature of the properties.

The program first reorganlizes the training data for each property

into a 1list of these sequences (or other outputs) that have

occurred. The 1list for Volce of our example is shown below:
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Sequence (Word, frequency)
010 one 5, two 5
01010 subtract 5, multiply 2
0101010 multiply 3

If a new utterance is presented to the program for recognition and
the feature Voice(1i) produces the sequence 01010, then Voice

will register one vote for the word "subtract'" and one vote for
the word "multiply"”. The unknown word is identified as the voca-
bulary word eliciting votes from the most features. Typically,
the 1dentified word received a vote, signifying a perfect match,
from only about 80 percent of the features.

In case of ties, the program makes use of information concerning
the number of times a word appears at a node. Thus, if "subtract"
and "multiply" tie for first place in the voting from all the
features and Voice=01010, then Voice will register 5 votes for
"subtract" and 2 votes for "multiply” in the run-off between these
two candidates.

The final declsion procedure 1s an attempt to find the message
from the set of possible inputs which is most similar to the
current lnput message. Because there i1s a wide variation in the
way people say things, the decision procedure does not insist

that the current input must be like one of the prototype input
strings in all ways that it was categorized; that is, 1t need not
be suggested by all properties. In this sense, the decision
procedure allows a generalization of the original training learn-
ing by looking for a best fit without putting a bound on the good-
ness of this fit.
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The property sequences have been consldered as independent charac-
terizations of the lnput message. In this case, by lndependent we
do not mean that the computations themselves are necessarily inde-
pendent, but that these descriptors of the input message are
treated independently in the decision process. With the assumption
of independence, the voting procedure is similar to a maximum
likelihood estimate.

The a priori probabllities of all messages are the same. There-
fore, the most 1likely message 1s the one for which the product of
the a posteriori probabilities (or the sum of their logarithms)
1s a maximum. For each property, every message, Mi’ previously
associated with the current input sequences S; 1s given a (scaled)
log probabllity of 100+Ni, where Ni)I is the frequency with which
Mi was seen for Si’ Messages not assoclated with Si in training
are given log-probability @ and can therefore be ignored in the
summation. These assignments of probabilities achieve in one
step a score which allows a single search to determine the most
likely message.

It has been experimentally determined that this voting scheme
works as well or better than a number of other measures that make
use of the same information. For example, we trlied the adjusted
welight used by Teitelman (1964) in ARGUS, a hand printed character
recognizer (a similarly structured pattern recognizer); and a
welght of log(1+N1) which 1s a good small sample probability esti-
mate of the a posteriori probability of Si'
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V. FUNCTIONS AND PROPERTIES USED IN RECOGNITION

The princlpal results of this research have been the development
of properties which characterize speech input signals in a way

to make recognition possible. These properties have evolved over
the course of the research, and represent a gradual learning by
the researchers of characteristics of speech as seen through the
"ear" of our input spectrum analyzer filter bank. Two different
sets of recognition properties are included here. The first is a
set of properties and functions which tend to describe the speech
signal in more lingulstic terms. Transitions of these properties
describe features of the 1lnput message which can be understood

in terms of the ordinary linguistic descriptions of such messages.
In this way, they tend to be more speaker independent than the second
set of properties which are described.

The second set of properties used for recognition described below
extract features of the spectral shape of a message. Their ex-
treme simplicity makes them seem ideal for hardware implementation,
and their high accuracy in recognition testifies to the uniform

way that people tend to say a particular message. At least there
' seems to be a fair uniformity as seen through our spectrum analyzer.

A. Linguistic Features

We distinguish functions, such as Loud(i), which have a domain

equal to the input spectral representation of an unknown word;
features, such as Voice(i), which are functions that are used in
recognition and have a range limited to a small number of states;
and feature sequences, such as Volce, which are the result of
removing the time dimension from a feature. The following functions
are used in the definitions of a set of 15 features., all functions
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have a single variable, i, which represents an index over time.
The notation F6(1) will be used to denote the output of filter 6
at time sample 1.

Functions

1. Loud(i) =F1(1) + F2(1) + F3(i) + MAX [F2(i), Fu(1)]
+ MAX [2(F3(i) - F4(i)), 01].

This function 1is intended to provide a measure of the
perceptual loudness of vowels. Perceptual loudness is
related to vocal effort whereas the acoustic energy in a
vowel depends in part on the vocal tract configuration as
well as vocal effort. For example, the low vowel, [a],
for which the vocal tract 1s relatively open will have a
greater natural intensity than the high vowel, [1], for
which the vocal tract is more closed (Lehiste and Peterson,
1959; Fant, 1960). The function is intended to compensate
for the reduced level assocliated with a low first formant.

2. ah(i) = F3(1) + F4(1) - F1(1) - F2(41).
This function and the following two functions are used to
characterize the spectral quality of the vowel nuclel of
a word. The vowels {i, a, ul] represent limiting articu-
latory positions for the tongue body. The vowel [a], as
in "pot", 1s produced by placing the tongue as far back
and as low as possible without producing a constricted
vocal tract (and therefore a consonant). An acoustic
correlate of this articulation is a high first formant,
resulting in a greater output in filters 3 and 4 than in
filters 1 and 2. The function ah(i) will therefore be a
maximum when vowels with a high first formant similar to
[a] are produced.
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3. ee(i) = F9(1) + F10(1) + F1l(i) + Fl2(1) - 2F6(1) - 2FT7(1).
The vowel [1i] as in "beet" is produced by positioning the
tongue body as high and as forward in the mouth as possible.
An acoustic correlate of this articulation is a low first
formant and a high second and third formant, resulting in
an energy minimum in filters 6 and 7, and an energy con-
centration between filters 9 and 12. The function ee(1)
will therefore be a maximum for vowels similar to [1].

4, oo(i) = F3(1) + Fu(i) + F5(1) - F8(1) - F10(1) - Fl2(1)
-F14(1) ~ F16(1).

The vowel [u] as in "boot" 1s produced by positioning the
tongue body as high and as far back in the mouth as
possible. An acoustic correlate of this articulatlon is
a low first and second formant, resulting in a major
energy concentration below F7 and reduced energy above
F7. The function oo(i) will therefore be a maximum for

vowels similar to [ul].

5. er(i) = F7(1) + F8(1) - F4(1) - Fl12(1).
This function 1is similar to the vowel functions in form,
but has the task of detecting spectra characteristic of
the consonantal and syllabic allophones of [r]. The low
third formant characteristic of [r] and [&] (as the vowel
in Bert) produces a distinct spectral shape with an energy
concentration centered in filters 7 and 8, a dip in energy
at filter 4 between the first and second formants, and an
absence of energy above F10 due to the low third formant.
The function er(i) will therefore be a maximum when phones
similar to [r, *] are produced.
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6. str(i) = F16(1) + F17(1) + F18(1) + F19(1).
This function is a maximum when high frequency frication
energy 1s present. The strident phones produce intense
high frequency energy, whereas a non-strident fricative
produces a small energy peak in filter 19. The function
str(i) will therefore be a maximum for many allophones
of [s, z, g, Z, X, ;, t, k], which are the first con-
sonants in [sin, zen, shin, azure, chin, gin, tin, kin]
respectively.

7. dspect(i) = |ah(i) - ah(i-1)]| + |ee(i) - ee(i)]
+ |oo(1) =-oo(i-1)}

This function is a computationally inexpensive approxi-
mation to a spectral derivative. The function will be a
maximum when tbe spectrum 1s changing rapidly, as for
example in a consonantal transition. Dspect(i) 1is used
as an ald in delimiting syllable boundaries. It is
also used to distingulish ee-1like vowels from some conso-
nant-vowel transitions that produce a momentary peak in
the _unction ee(i).

8. ev(i) = sum of F1(1) through F16(1).
This function tends to be greater for vowels than for
adjacent consonants. This 1s because a constricted or
closed vocal tract configuration results in a reduced
acoustic output in the frequency range spanned by these
filters. The function is used to detect syllable boun-
daries.
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9. damp(1l) = sum of F1(1) through F19(i) minus sum of
F1(i-1) through F1¢(i-1).
This function indicates a sudden increase in energy in
all filters. It will be a maximum for stop releases and
sudden voicling onsets. It is used to detect stop bursts.

Features

The preceding functlons are used in the computation of the following
features. The usual Interpretation of the three feature values
(states) is: "-1" implies that the property is irrelevant for this
time interval; "O" means that the property 1s relevant but not
present; and "1" means that the property 1is relevant and present.

1. Voice(i) =1 1if [F2(i)>tl] or [F2(1i)>t1-5 and Voice(i-1l) = 1]
0 otherwise
tl = 34

A hystereslis region of 5 units is employed about the threshold,

tl, to ensure that a change of state 1s significant and not due to
random fluctuations in level. The effect of the second conditional
part of the definition 1s to keep Voice(i) in its current state

for values of F2(1) between 30 and 34, the hysteresis region.

An unknown word may vary considerably in overall recording level
if the speaker moves with respect to the microvhone or changes his
vocal effort. It 1s much easler to compensate for recording level
by modifying the threshold, tl, than by attempting to modify the
raw data. The maximum value attained by the time function Loud(1)
is used for this normalization:

Maxloud = Maxi [Loud(1i)]
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Loud(i) attains its maximum value near the midpoint of the stressed
vowel nucleus. For a speaker positioned correctly in front of a
microphone and speaking at a comfortable level, a typical value for
Maxloud is 200. Threshold normalization is accomplished by com-

puting a new threshold, tl', for each unknown word according to the
following formulae:

tl' = tl* (200/Maxloud)

The method fails if the recording level increases to saturation
or decreases below background noise. The effective range for

recording level sensitivity is somewhat less than the full 45
declbel range of the input system,

The fundamental voice frequency of a male speaker will vary from
about 90 to 180 Hz. The greatest energy due to volcing will appear
in the low frequency filters because energy in the harmonics of

the laryngeal source falls off at about 12 db per octave. Voice(i)
looks at the energy in filter 2. If this energy exceeds a threshold,
voicing is present, otherwise not. This simple definition has
worked surprisingly well. The greatest difficulty has been in
treating final voiced stop releases consistently, and in detecting
volcing energy in some voiced fricatives.

2. Syllable(i) = 1 when the function Cv(i) 1s significantly
increasing
0 when the function Cv(i) is significantly
decreasing
otherwise, set to same value as in previous
time sample.
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The precise computation is most easlily stated in terms of a pro-
gram segment. Peak and Valley are variables indicating the local
maximum and minimum in the function Cv(i). Time is a variable
that counts the number of time samples during which Syllable(i)
has remained in the same state.

Syllable(0) = 0, Valley = O, Peak = 0,
Time = 6, Cv(0) = 0
Do for 1 = 1 in steps of 1 to 200:
Time = Time + 1
if [Syllable(i-1) = 0], Go To 1
if [Cv(i-1)>Peak], Peak = Cv(i-1)
Syllable(i) =1
if [[Time<6] or [[Cv(i)>Peak - 70] and [Dspect(1)<35]] or
[Cv(i)>Peak - 20]], Go To 2
Syllable(i) = 0, Valley = 1000, Time = O
Go To 2
1 1if [Cv(i-1)<Valley], Valley = Cv(i-1)
Syllable(i) = 0
1f [[Time<6] or [Voice(i) = 0] or [[Dspect(i)<35] and
[(Cv(i)<Valley + 40]] or [Cv(1i)<Valley + 20]],
Go To 2
Syllable(l) = 1, Peak = 0, Time = 0
2 Continue

The times at which this feature changes state do not delimit
precise syllable boundaries. The feature usually gives an accurate
count of the number of syllables in a word and provides a rough
segmentation. Examples of difficulties with Syllable(i) include

a frequently missed third syllable in "binary" and the segmentation
into two syllables of some repetitions of the words "four" and
"core'.
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3. Stress(i) = 1 if Loud(1) = Maxloud for the first time.
0 1f Syllable(i) = 1
-1 otherwise

Maxloud = Maxi [Loud(1)]

This feature 1s designed to indicate which syllable of a word 1s
the one which has the maximum loudness and 1s therefore the
stressed syllable. Stress assignment has worked very well. The
only word for which stress assignment has not consistently agreed
with the expected stress assignment 1is "6@erflow", and this may
be due to variations in the actual stress given the word by our

speakers.

4y, [aJ-1like(i) = -1 1if Voice(i) =0
1 if [ah(i)>1] or Lah(i)>-2 and
fal-like(i-1)= 1]

0 otherwise

This feature indicates the presence of the vowels [a, 0%, 5.3 5 A
in many phonetic environments, the vowels in [pot, boat, bought,
bat, but] respectively.

5. [1]-11ke(i) = -1 if Voice(i) =0
1 if[[ee(i)>16]or [[1]-1ike(i-1) = 1 and ee(1)>8]]
and F19(1)<25
and Dspect(i)<30
0 otherwise

This feature indicates the presence of the vowels [1,T, e, e ]

(the vowels in [beat, bit, bait, bet) in many phonetic environments.
The two additional clauses involving F19(i) and Dspect(i) are
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utilized to eliminate false responses to stridents and consonantal
transitions which are momentarily (1i]-like.

6. [ul-like(i) = -1 if [Voice(i) = 0]
1 1f [o0(1)>t2 or [[ul-1like(i-1) = 1
and oo(1)>t2-71] and F2(1)>F1(1i)
0 otherwise

te = 32

This feature indicates the presence of the vowels [u,, o¥, o]
(the vowels in [boot, book, boat, bought]) in many phonetic
environments. The additional clause involving F1(i) and F2(i)

i1s intended to eliminate responses to consonants such as

[my, n, 1, w]l. It has been found necessary to ignore any transi-
tions to the "1" state in the features [i1]-1ike(i) and [u]-like(i)
if they last less than 6 time samples. Even with this additional
constraint, a number of consonants are assigned one of these vowel-
like qualities. In addition, there appear to be no natural
threshold boundaries in the vowel-quality space so that a certain
percentage of the vocabulary is treated inconsistently by each
feature.

7. [rl-1ike(i) = =1 if [Voice(i) = 0]
1 if [{er(1)>18 and F3(i)-Fi(1)>5]
or [er(i)>1l4 and [rl-like(i-1) = 1]]
0 otherwise

This feature indicates the presence of [r,3] in many phonetic

environments. The clause involving F3(i) and F4(1i) is intended
to ensure that the first formant frequency 1s not high. The low
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third formant of these phones produces a spectrum that is distinct
and relatively easily differentiated from all other speech spectra.
The feature works consistently except following voiceless stops
and in some unstressed intervocallc positions.

8. Strident(i) is most easily defined in terms of a program

segment:
Maxstr = 0 t3 =70
Do for 1 = 1 in steps of 1 to 200

if not [[[str(i)>t3] or [[str(i)>t3-20] and
[Strident (1-1) = 1]]] and [str(i)>Maxstr-30] and
[[str(i)>str(i-1)] or [Strident(i-1)= 1]1]]
Go To 1

Maxstr = Max [Maxstr, str(i)]

Strident(i) =1
Go To 3

1l Maxstr = 0

if Voice(i) = 1 Go to 2
Strident(i) = 0
Go To 3
Strident(i) = -1
3 Continue

This feature indicates the presence of [s, z, §, E,] and also
(t, 4, k, g] in certain phonetic environments (generally in
stressed position and followed by a front vowel). The floating
threshold, Maxstr, 1s employed to divide a sequence of two
successive stridents (e.g., [st]l) into two strident segments
separated by the state "-1".
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9. Strid-stop(i) = 0 if Lstrident(i) = 1
1 if Strident(i) =1
-1 otherwise

where Lstrident(1i) is the same as Strident(i) except that the
state "+1" must occur for more than 6 time samples or it is trans-
formed to the state -1. This property computes the length of a
strident segment and places it in one of two categories. 1In
general, a long strident 1s a continuant and a short strident is

a stop. However, in many phonetlc environments, voiceless stops
may have an aspiration duration that is longer than the frication
duration of an intervocalic fricative.

10. Fricative(i) = 1 1f [[F19(1)>t4] or [[F19(i)>tl-4]
and [Fricative(1-1) = 1]]
and [Loud(i)<120}]
0 if Voice(i) = 0
-1 otherwise

th = 6

This feature looks for the high frequency energy characteristic

of [f, v, 0,7], (the initial consonants of [fin, vend, thin, then]).
Strident phones generally exceed the threshold and are also detected
by Fricative(l). The upper bound on Loud(i) is used to prevent a
response to a loud vocalic sound in which energy 1s spread over

the entire spectrum. A feature like Fricative(i) or Strident(i)
sends a great deal of information about a word to the recognition
algorithm, but neither feature is as consistent 1n its analysis

of an unknown word as a simple feature such as Voilce(i).
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11. Stop-burst(i) = 1 if [[damp(1)>75] and [F19(1-1)<30] and
[[(F2(1)<20] or [F2(1)-F2(i-1)<1]1]]
0 if Voice(i) =1
-1 otherwise

This feature detects the sudden onset of energy in all filters
that is characteristic of the release of a stop. The stop burst
is distinguished from a rapid volcing onset by requiring the
energy in F2(1) to either be low or not increasing. The "-1"
state following a burst 1s removed if it 1s less than 3 time
samples long. This transformation i1s an only partially successful
attempt to signal voiced stops by the sequence "1,0" and voiceless
stops by the sequence "1,-1,0."

12. Nasal(i) = -1 if Voice(i-2) =0
1 1if [Loud(i)-Loud(i-1)>5
or [Nasal(i-1) =1
and Loud(1)-Loud(i-1)>11]
and [ah(i) -ah(i-1)>5
or ah(i) = ah(i-2)]
0 otherwise

This feature looks for a volced segment followed by a sudden
increase in loudness and a rising first formant frequency. A
nasal followed by [1] does not satisfy this criterion, but nasals
in many other environments are detected. Initial [£] is frequently
also detected by the feature. Features that look for dynamic
properties of the input spectra are not easy to define efficliently.
This relatively simple algorithm does not glive a very satisfactory
definition of nasality.
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13-15. There are three other features of a somewhat different

type. These features are intended to give a fairly precise
characterization of the stressed vowel in the unknown word. The
features, called [al-stress, [1]-stress, and [ul-stress respectively,
characterize the spectrum at a single time sample, that point

during the stressed vowel when Loud(1i) reaches a maximum for the

word.

The ranges of the functions ah(i), ee(i), and oo(i) have been
divided into 10 regions corresponding to the 10 possible states
of the three special features:

UPPER BOUND ON REGION

State: 1 2 3 y 5 6 7 8 9 10
ah(i) | none 14 9 ] 0 -3 -6 -11 ~16 =27
ee(1) [ none | 80 60 40 20 0 { -20 | -40 | -60 -80
oo(1) |{none | 80 60 4o 20 0 | -20 | -40 | -60 -80

A typical stressed [1] phone might be characterized bv the
states [a)-stress=9, [i]-stress=1, and [u]-stress=6. It has been

found that this characterization 1is relatively stable for a given
word. Most words fall into two or at most three states for each

of the features.
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B. Non-Linguistic Properties

A set of abstract non-linguistically oriented properties was
defined near the end of the research project in order to test the
performance of the linguistically oriented features just described.
The properties are intended to take advantage of some of the
constraints that apply to speech spectra, but to be unaware of

the detailed phonetic content of the words.

There are two distinct types of spectral shape properties that
were used in this set. The first nineteen properties crudely
categorize the shape over time of the output of each of the
nineteen filters, individually, with no attention paid to
correlation between filters. There are three regions of "interest®”
in the output. The spectral property is given the value "-1"

if the output is in the lowest region, "0" in the middle region,
and "1" in the highest region. A hysteresis region around the
transition threshold is used to prevent many transitions when the
filter output is near the border of these regilons.

Formally, we define a set of 19 spectral amplitude properties,
Sn(i), as follows , where the notation Fn(i) denotes the output
of fllter n at the 1lCh sample interval:
Sn(i) = 1 if [Fn(1)>B] or [[Fn(i)>B-8] and [Sn(i-1)=11]]
0 if [Fn(1)>A] or [[Fn(1)>A-8] and [Sn(i-1)# -1]]
-1 otherwise
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A and B, as a function of the filter number, are given in the
following table:

n| 1| 2| 3| 4| 5| 6| 7| 8{ 9|10 11| 12| 13|14 ]|15|16(17] 18] 19
37{34(30|25|20{30|25|20|15| 25| 21| 18| 15|20} 15| 17|20 17| 13
B|50 |47 |4b4lb0|35|45[{U40|35|30 | 38| 34| 31| 27|35 30| 30| 30|25, 30

b=

The threshold values in this table should be modified if there
is a change in recording level. This can be done in the same
way as previously described for thresholds involving linguistic
features.

Another ten properties are used which roughly describe the
correlation between adjacent filters for the lower ten filters.
These properties categorize the differences between energiles in
adjacent filters. The three alternatives are: the next higher
band has significantly more energy, significantly less energy,

or about the same energy, as its lower neighbor. These properties
are given values "1", "-1", and "O" respectively in these cases.
Formally, we define a set of 10 spectral difference properties,
Dn(1), as follows, where n=1, 2, ... , 10 and m=n+l:

Dn(i) = 1 if [[Fm(1)-Fn(1)>4]
or [[Fm(1i)-Fn(1)>-1]
and [Dn(i-1)=1]]
-1 if [[Fm(i)-Fn(1)<-4]
or [[Fm(1i)-Fn(i)<1]
and [Dn(1-1) = -1]]
0 otherwise

Ty
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A change of state for one of these propertlies indicates that the
spectral shape of the current time sample differs from the spectral
shape of the previous time sample. A change of state is not pro-
duced by a simple change in level. This is because the large
hysteresis reglon around the thresholds prevents a property from
changing state for the equal energy case.

The thresholds for the two types of properties were selected so
that each state could be reached by at least some of the vocabu-
lary items. The 29 properties produce sequences of states used
in recognition. We can compare directly these recognition scores
with those produced by state sequences from the 15 lingulstic
features.
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VI. RESULTS

The results of this research are best described in three parts.

We first describe the experimental procedure and the results of
the recognition system in an optimal (quiet) environment. We then
describe an experiment which indicates the behavior of the system
when degraded by added noise. Finally, we discuss a technique by
which we evaluate individual properties when the recognition rate
gets so high that improvements can only be measured indirectly.

A. Recognition Experiments

As benchmark experimental data, we recorded a word list, Table 2,
used by Ben Gold in other speech recognition experiments. ‘nis
1list was recorded in a quiet room (S/N ratio > 35 db) as spoken
10 times by two speakers, KS and CW. Both had been used as sub-
jects by Gold. KS and CW were also recorded 5 times each on two
other lists, an augmented International Word Spelling alphabet,
Table 3, and a message list typical of one that might be used in
a NASA mission context, Table 4,

The messages were recorded on high gquality magnetic tape at

7 1/2 ips, with approximately two seconds gap between words. For
almost all experiments we used a digital tape contalning the 6 bit
logarithms of the filter bank output sampled every 10 milliseconds.
Only in the noise degradation experiment was the analog input used
directly.
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insert
delete
replace
move
read
binary
save
core
directive
list
load
store
add
subtract
zero

one

two
three
four
five

six
seven
elght
nine
multiply
divide
number

Bolt Beranek and Newman Inc

name
end

scale
cycle
skip

Jump
address
overflow
point
control
register
word
exchange
input
output
make
intersect
compare
accumulate
memory
bite
quarter
half
whole
unite
decimal
octal

TABLE 2. Word List From Ben Gold
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TABLE 3.

zero

one

two
three
four
five

six
seven
elight
niner
affirmative
negative
alpha
bravo
Charlie
delta
echo
foxtrot
golf

Bolt Beranek and Newman Inc

hotel
India
Jullet
kilo
Lima
Mike
November
Oscar
papa
Quebec
Romeo
Sierra
tango
uniform
Victor
whiskey
x-ray
yankee
zulu

International Word Spelling

Alphabet and Numbers
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one distance to dock
two fuel tank content
three time to sunrise
 four time to sunset
five orbit apogee
six orbit perigee
eight revolution time
nine closing rate to dock
point midcourse correction time
plus micrometeoroid density
stop radliation count
zZero what 1s attitude
seven remaining control pulses
minus alternate splashdown point
pressure weather at splashdown point
negative sea and wind at splashdown point
what 1s yaw visibllity at splashdown point
what is pitch temperature at splashdown point
end repeat skin temperature
affirmative power consumption
inclination fuel cell capacity
distance to earth repeat at intervals

TABLE 4. Message List From NASA Context
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A tralning round consists of one repetition of the entire word

list in which the computer makes an identification attempt, is

told the correct response, and stores the characterization of this
message for use in future identification. With four rounds of
training utilizing the linguistic properties, the system recognized
correctly (gave as unambiguous first cholce) 51 and 52 out of

54 words of the Ben Gold 1list for KS and CW respectively. Early
experiments indicated that additional training would not increase
the recognition scores after reaching its asymptote, and these

95 +% correct scores were available after only 3 rounds of training.
Further experiments gave speaker KS 38 out of 38 correct on the
International Word Spelling Alphabet and 43 out of 44 correct on
the NASA message set, indicating the usefulness of these linguistic
properties on other message sets. Typical recognition rates for
the Gold 1list as a function of training rounds are shown in

Table 5. Note the lack of improvement (and oscillation of scores)
with more than 4 rounds of training. Part of the difficulty is
that these later rounds were recorded at a different time. This
indicates that some degradation in performance may be expected
under less well controlled conditions.

Some incorrect responses are listed in Table 6 (for KS on the Gold
list after 4 training rounds). These confusions give an indication
of the types of phonetic information that is not well represented
by the non-linguistic features. For example, the "four-core"
confusion suggests that frication noise often falls below the

lower thresholds of the fillters, and that formant transitions are
not sufficiently distinct to trigger different state transitions
for this word pair. It is expected that some improvements could

be made in the threshold settings by studying the data of Table 6.
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TABLE 5.
Typical Recognition Scores (KS)

Previous Training 1 2 3 y 5 6 7 8 9 || Perfect

Ben Gold List 43 1 44 {49 | 51 (47| 45| 52| 49 | 51 54

Alphabet 30 { 36 | 34 | 38 by

NASA List 35 1 37 |43 43 38
TABLE 6.

Typical Mistakes

Guess Correct Answer
Alternate Splashdown Point Weather at Splashdown Point
Core, or Whole Four
Memory Binary
One Load
-51-
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These asymptotic recognition scores also indicate the separability
of this 54 word vocabulary with these linguistic properties. The
three vocabularies were combined into a single vocabulary of

114 distinct messages (duplications between vocabularies were
considered only one message). On this larger vocabulary, the
recognition score was a remarkable 110 out of 114 forks. All
those messages identified correctly in the individual lists were
also ldentified in this larger context after the same four train-
ing rounds. This indicates very little interference between words
on these different lists; and implies that fairly large non-
interfering (phonetically balanced) vocabularies might be con-
structed while maintaining thls high recognition rate. It should
be emphaslized that while messages were repeated in training and
testing, the same speech utterance was never seen more than once
by the system.

To test the consistency of speakers uttering messages, we devised
the spectral threshold properties described earlier. We tested
these properties for recognition only on the Ben Gold word list.
After four rounds of training, the system was able to identify
correctly 52 out of the 54 input messages presented to it for KS;
and 51 out of 54 for CW. This rate is as good as that discussed
for the linguistic features; however, the cross speaker correlation
was higher for the linguistic property set. For the second speaker
(using the first speaker's training) 26 out of 54 messages were
identified correctly on the first round, whereas using the spec-
tral properties only 15 out of 54 were correctly identified.
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B, Performance of the System with Added Noise

Speech-shaped random noise, (i.e., white random noise filtered by

a bandfilter whose frequency response is identical to the long-
term RMS speech spectrum) was added to the speech signal to test
the degradation of the system under adverse conditions. It was
prefiltered in order to (1) obtain approximately equal noise levels
in all filter channels and (2) avoid overloading of the filter-
networks. This would occur for a white nolse input at low S/N
ratios, due to the high frequency pre-emphasis in the filter bank.
The set up used to add nolse to the speech input is shown in

Fig. 6.

The S/N ratio at the input to the filter networks (B) is determined
by the constant S/N ratio of the speech input and by the noise
level as set on the calibrated attenuator. The nolse level of the
speech input was measured at points A, B, C and found to be

35 db, 36 db* and 34 db respectively, below the speech peaks with
speaker DB. (speech peaks measured with a ballantine-true-RMS-
meter, VU-METER damping) The noise level of the speech-noise
generator was set so that the overall level was O VU at point D.
(attenuator in ODB position) With the attenuator set at -36 db
and a speech S/N ratio of 36 db, the effective S/N ratio at

point B would be 33 db.

¥The noise level at point (B) is 1db lower than at poiat (A)
because of the low frequency cut off (120 HZ) in the input
amplifier.
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The system was trained for four rounds with no noise added. The
same set of utterances with different levels of noise added were
used to test the system. The recognition rates are shown in Fig. 7.
Note that DB is a less consistent speaker than the other two, or
the properties need to be tuned for him, because the asymptotic
recognition rate is only about 80%. The shape of the rate of
recognition curve under nolse degradation is identical to that for
humans, falling off almost completely in 20 db. However, the

break for humans is 10 to 20 db lower, and the asymptotic rate

much higher.

C. Evaluation of Properties

As recognition scores of the system get better and better, it
becomes more difficult to evaluate the individual properties. A
measure of information content has been used as an aid in the
evaluation of individual features. This measure of the information
contalned in a feature tree has provided some insight into the
desirable and undesirable properties of a feature. The measure
will be defined, applied to some examples, and then discussed.

Let: J be an index over the nodes of a tree
I be an index over the words in the vocabulary
nyg be the number of times word I amnpears at node J
NV be the total number of words in the vocabulary
NT be the number of rounds of training
R be a measure of the Information contained in the

tree about the identity of an unknown word.
P(I) probability of Ith word (assumed equal to 1/NV)
R=H(I) - H, (I)

where H (I) =-% o (I) log [p(I)] = 1log NV l n
n 1J
- I & —d
and HJ(I) = %E p(I,J) lor [p;(I)] %E (N (WT log [§ nos ]
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Effective S/N Ratio 34 31 25 20 15 10
Number Correct 42 by 43 38 31 23
Percent Correct 78 81 80 70 59 by
Log (%-Correct) 1.89 1.91 1.90 1.85 1.77 .65
2.0 1 T T 1 l
Log(%-Correct)
1.9 - —— 1 © 2 b
LISPER
1.8 —
(o)
1.7 —
1.6 — —
| | | | I | |
0O 5 10 15 20 25 30 35 S/N Ratio (db)

Fig. 7 Recognition Rate With Added Noise
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Example 1:

add 4 subtfact 4 multibly 4 ivide 4
R = H(I) = 2 bits

This is an example of the perfect tree, one that assigns a unique
node to each vocabulary word.

Example 2:

add 4 multiply 4
subtract 4 divide 4
R=2 -1 =1 bit

This 1s an example of a tree that consistently assigns a word to
the same node, but does not completely separate the vocabulary
words from one another.

Example 3:
add e subtract 2 divide 2 “add 2

subtract 2
multiply 2
divide 2

R=2«1=1 bit

This i1s an example of a tree with more nodes (greater possible
separability), but with an inconsistent assignment of words to
nodes.
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There 1s always the possibility that the unknown word will be
assigned to a new node of the tree, one that was not present during
training. The tree can provide no information about the identity
of the word in this case. The measure of information, R, does not
account for this possibility because it assumes incorrectly that
the frequencliles, nyys are accurate estimates of the underlying
probabilities.

R may be a biased measure because of this fact. When training
grows a large tree, there 1is, initially, a greater chance of a
word producing a novel node than when training grows a smaller
tree., The difference between large and small trees 1n growth
of novel nodes after about three rounds of training is not very
great. Therefore, we have not attempted to correct for the
potential bias in the information measure R.

There are some intultive measures of the goodness of a feature we
have found interesting. The number of nodes N (different input
sequences found in training) gives a measure of the range of
separation that can be expected of the property. The number of
messages M, or average number of variations per input message M',
gives a measure of the consistency of the property. The ratio
N/M', of separability to consistency, seems intuitively to be a
quantity one would want to maximize.

The intuitive measures and the computed information provided by
each of the linguistic features is tabulated in Table 7. There
seems to be a reasonable correlation between R and N/M'. It should
be obvious that the features are highly redundant and that there
may be palrs of words that we are unable to differentiate with

this feature set. The latter question can only be answered by
testing additional repetitions of the vocabulary and noting both
error frequencles and the degree of similarity of feature assign-
ments for palrs of words.
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Average # R
N=# M=# of variations Information

Nodes Messages M'=M/54 N/M! Measure
1. Voice 3 64 1.19 2.5 1.4
2. Syllable 4 70 1.30 3.1 1.5
3. Stress 7 72 1.33 5.3 2.1
4, [al-1like 33 110 2.02 16.3 3.0
5. [1]-1like 37 126 2.34 15.8 3.0
6. [ul-like 36 127 2.35 15.3 2.6
7. [rl-like 21 91 1.68 12.5 2.4
8. Strident 45 110 2.02 22.2 3.2
9. Strid-stop| 11 92 1.71 6.4 2.5
10, Fricative 55 139 2.57 21. 4 3.2
11. Stopburst 50 167 3.09 16.2 2.7
12, Nasal 19 110 2.02 9.4 1.8
13. [a]-stress| 10 158 2.92 3.4 2.3
14. [1)-stress| 10 166 3.07 3.3 2.5
15. [u]-stress{ 10 189 3.50 2.9 1.8

TABLE 7. Evaluation of Linguistic Properties
After Ten Rounds of Training - Speaker KS
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The trees grown by the non-~linguistic features are quilte large.
Most words are assigned to more than one node during training.
Even with this inconsistency, the information provided by each
feature is relatively high. As a comparlson figure, consider the
fact that a feature detecting the presence or absence of voicing,
functioning with no errors, provides less than 2 bits of informa-
tion to the recognition algorithm. (The vocabulary words

contain 1, 2, 3, or 4 voiced segments and this results in a
feature tree with only four nodes.)

There are two conclusions to be drawn from these results. One 1is
obvious, that there 1s a trade-off between the separability of
words provided by a large tree and the consistency with which a
word is analyzed; see Example 2 vs. Example 3. The information

measure, R, gives a good idea of what that trade-off is.

Another, non-obvious, conclusion is that the information measure
accounts for the comparable recognition scores using non-linguistic
and linguistic features. The linguistic feature set was derived
with a strong emphasis on consistency. The linguistic features
condense a number of acoustic measurements to a binary decision,
the presence or absence of some attribute. Both of these strategies
are bad given the nature of the recognition algorithm. This
algorithm is designed to make efficient use of all of the clues
provided by the features. The emphasis on consistency and minimal
bilnary distinctions reduces the information flowing to the recog-
nition algorithm. Errors in feature assignment are then more
likely to be fatal. A general observation is that more features
with greater redundancy almost invariably led to higher recognition

scores,
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VII. DISCUSSION

We have outlined the reasons why word recognition based on spectral
input data is not a straightforward problem in pattern recognition.
The invariants in the speech code appear to be relatively complex
functions of the spectral input. We have also outlined the reasons
why phoneme recognition is not an appropriate intermediate step in
a word recognition algorithm. Unsolved problems include the segmen-
tation of speech spectra into phoneme sized chunks and the deriva-
tion of rules for recognizing all of the allophones of a given
phoneme. Our approach is intermediate between pattern recognition
and phoneme recognition; it combines some of the advantages of
both.

A set of acoustlc feature detectors have been defined. The time
dimension is removed from each feature so that the learning pro-
gram deals only with the sequences of states produced by the fea-
ture definitions. The feature sequence characterization of an
input message is sufficientiy redundant so that the recognition
algorithm is able to deal successfully with errors and inconsis-
tencies 1In some fraction of the features.

The advantages of this approach are:

(1) No precise segmentation of the utterance is required;
features can change state in arbitrary time segments
because the time dimension is removed from a feature
in a way that is independent of the changes of state
of other features.

(2) A word need not be registered at exactly the same

place in the 2 second speech sample; state sequences
are independent of time origin.
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(3)

(4)

(5)

(6)

(1)

(8)

Feature definitlons can be made insensitive to the re-
cording level by adjusting threshold settings according
to a measure of the loudness of the unknown word.

Feature definitions can be made less sensitive to noise
by employing hysteresis regions about thresholds.

State transitlion sequences welght changes in spectra as
the important cues to word recognition. (simple pattern-
matching schemes will give undue weight to a sustained
vowel).

Features may be defined to take advantage of natural
acoustic boundaries between phones (Stevens, 1968b)

and thereby minimize the variability in state transition
sequénces produced by a feature.

Features may be added to the system to provide redundancy
for those decisions that are difficult. There is a
direct control over the amount of redundancy sent to the
recognition algorithm.

The feature approach permits the introduction and testing
of lingulstic hypotheses, such as placing greater em-
phasls on the properties of the stressed syllable.

The disadvantages of this approach are:

(1)

Removal of the time dimension discards all information
concerning the simultaneous occurrence of specific
states for two or more features. We have used the
voleing feature to reintroduce some timing information.

. =62~
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(2)

(3)

(4)
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There exist pairs of English words for which this "time
with respect to the voiced segments" 1s not enough to
disambiguate the pair. Speclal features can always be
defined to treat special cases, but our approach is not
easily generalized to yield segmentation of an utterance
into phone-sized chunks.

The features currently implemented are not speaker
independent. Each speaker will have to train the system
and this requires approximately 3 or 4 repetitions of
the vocabulary.

Our system will degrade in performance as the length of
the vocabulary 1s increased or as the number of speakers
that 1t can simultaneously recognize is increased. This
property is of course true of any recognition program;
however, it should be noted that, with our current sim-
ple-minded set of features, there is a high error rate
in any feature characterization and we rely heavily on
redundancy to select the most likely input message.

For our limited objectives, the current implementation
is computationally fast and gilves satisfactory results.
However, more sophisticated and more rellable features
would be desirable. The exponent in the function re-
lating computation time and feature performance 1s not
known, but may be restrictively large.

A set of simple sum-and-difference properties was compared with

the linguistically motivated features 1in the latter stages of re-

search. The comparable performance of this set of propertles has

led to several conclusions concerning the desirable attributes of

features that operate within this framework.
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(1) A good feature includes a maximum amount of information
in the sequences that it produces. Factors that in-
fluence information content are consistency of charac-
terization and the number of vocabulary items that can
be differentiated on the basls of the feature. A volcing
feature that works perfectly does not contaln as much
information about the unknown word as any of the relatively
inconsistent spectral propertles. In other words, a
moderate amount of inconsistency 1is tolerable 1if accom-
panied by increased word separability (and additional
features to provide redundancy).

(2) Another reason why the spectral properties compared
favorably on the basls of recognition scores 1s that the
linguistic features are fewer in number and computationally
similar in form to the spectral properties. We believe
that, even for limited vocabulary word recognition, a
set of phonetically oriented features exist which are
better in some sense than simple pattern features. The
reasons for this faith consist of arguments:

(a) that there exist natural acoustic boundaries
between phones (Stevens, 1968b),

(b) and that there exist invariant attributes in
acoustic waveforms from different speakers; these
invariants, when incorporated into feature defini-
tions, will produce recognition scores that are
less sensitive to the individual speaker.
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(3) The arguments in favor of phonetically oriented features
are offset by the computational simplicity of the spec-
tral properties. Not enough 1s currently known in
acoustic phonetics to take advantage of these theoretical
benefits without additional basic research. We argue
that a carefully selected set of properties like our
spectral properties represent a practical word recognition
solution that may not be superseded for some time to come.

The research described in this report does not consistute a com-
pleted investigation. There are many open questions that can
profitably be pursued. The list of linguistic features described
in this report is biased 1n favor of features that seemed easlest
to define and implement. A glaring deficiency is in the area of
place-of-articulation features for stop and nasal consonants. The
primary reason for not including features of this type 1s that the
feature definition will depend in part on the specified vowel
following the stop. The result must be a falrly complex definition
in terms of parameters that are not well understood.

We hope to study this and related problems of context dependent
features by implementation of recent proposals of K. N. Stevens
that place-of-articulation for stops may be identified by the
timing of energy build-up in high and mid-frequency regions rela-
tive to the time of build-up in the low-frequency region. Other
features to be developed are Aspiration, Tense-lax, Front-glide,
and Back-glide. Several of the current features can be substan-
tially improved by context-dependent definitions (e.g., nasal).

We wish to investigate further the reasons for the success of the

non-linguistic features. Of help would be a measure of the infor-
mation about the identity of a word that one feature gives
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conditional to the fact that we know the sequence of states gene-
rated by another feature, i.e., independent additional information
that a new feature provides. Such a measure can be defined in the
same general way as was described in section VI. With this measure
and the results obtained from the development of new linguistic
features, we may be able to modify the spectral property set to
give even better results.
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APPENDIX A CIRCUITS OF FILTER BANK

Input Stage

The circuilt diagram of the input stage is shown in Fig. T.
The output from a conventional tape recorder is fed 1nto

an input amplifier (Type BBN-DE-200) whose variable feedback
resistor provides the common gain adjustment for all filter
channels. The gain adjustment procedure 1s facilitated by

a VU-meter connected to the output of the 1lnput amplifier.
By means of a separate potentiometer this VU-meter may be
adjusted such that speech peaks exceeding +3VU will indicate
clipping in the fillter channels and/or overloading of the
A/D converter.

The RL-network in the feedback path of the first driver
amplifier provides the high frequency pre-emphasis. By
means of a switch this network may be replaced by a resistor
for gain calibration of the filter channels.

Since the bandpass filter networks require inputs of opposite
phase, a second 1lnverting driver amplifier 1s used as

shown on the lower right of Fig. 7. A potentiometer in the
feedback path provides for adjJustable amplitude balance of
the two input signals.

-67-



Report No. 1667 Bolt Beranek and Newman Inc

Band~Pass Filters

The pole pattern yilelding the frequency responses of Fig. §
is shown in Fig. 9. Poles assoclated with one filter are
connected by converging lines. Each fllter shares two poles
with each neighboring filter.

According to the Lerner synthesls procedure, poles of an
individual filter are spaced at equal intervals (240 Hz) in
the pass-band and at half intervals (120 Hz) at the band
edges. Since the frequency responses of neighboring filters
have thelr 3 4B crossover points at a frequency mid-way
between the shared poles, all U-pole filters (no. 1-15) have
bandwidths of 360 Hz. The number of the poles for the re-
maining filters are selected such that bandwidths as given
in Table 1 resulted. |

Each pole of Fig. 9 1s realized by a series resonant circuit
as shown in Fig.1l0 for filters no. 1 through 15. The proper
pole residue 1s achieved by resistor weighting of the currents
from each resonant circuit into the summing node of an

operational amplifier as described by Drouilhet and Goodman(1960).

Identical inductor values were used for all resonant circuits
and the capacitors were calculated by C = l/Un2Lf2, where

f is the frequency of a pole. (Approximately 1% of the C
value was realized by a trimmer capacitor to compensate for
slight inaccuracies and variations of the filter components.)
For a chosen value of L = 0.5 mh, R = 1.66 k was obtained
from the relation L/R' = 1/2n + 36C, where R' = 2/3 R, the
parallel resistance of R and 2R.
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Filters no. 16 though 19 were realized by the same circult
structure as shown in Fig.jg9, with poles in the passband

and at the band-edges. (Fig. g) weighted by R and 2R respect-
ively. The highest pole at 6620 Hz was tied over R to

ground to simulate the input impedance of an additional
neighboring summing amplifier as is also shown for the lowest
pole in Fig. 9.

Rectiflers and Low~Pass Filters

The circuitry containing the summing amplifiers, rectifiers,
low~-pass filters and output amplifiers is shown in Fig. 11.
(A1l operational amplifiers: Union Carbide type H6010).
The circuit for filter channel no. 1 is shown in the upper
portion of the figure. The summing amplifier 1s followed
by a full wave rectifier circuit. PFull wave rectification
was necessary for filter channel no. 1 only, in order to
reduce the ac-components passed by the low-pass filter of
this channel. (At 80 Hz the rms level of the ac-compcnent
in the output of filter channel no. 1 is 35 dB below the
dec level and decreases with a slope of 22 dB/octave.)

The circuit in the lower portion of Fig.ll is used for filter
channels no. 2-19. The first amplifier (1) sums the current
components from the band-filter, (2) half-wave rectifies that
signal and (3) provides a signal of adjustable amplitude to
drive the low-pass filter. The gain of these amplifiers is
adjusted such that all dc channel outputs are equal for white
nolse input to the spectrum analyzer (pre-emphasis network
not used).

The output of the low-pass filters is fed into output amplifiers
which provide low impedance sources to drive the A/D converter.
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APPENDIX B Examples of the sequences produced by selected features

l.

for ten repetitions of the Gold vocabulary by speaker
KNS.

Volce

The sequence 010 indicates the presence of one voiced segment,
01010 indicates two volced segments, and 0101010 indicates
three voiced segments. The initial portion of any sequence

is not repeated and is implicit in the columns in the printout.
A ten bit (octal) code follows each vocabulary word. This
code indicates which repetitions of the word produced the
sequence. For example, the first 9 repetitions of the word
"bite" produced an indication of one voiced segment, and the
10th repetition produced an indication of two voiced segments;
intense prevolicing of the [b] appears to have triggered the
extra segment 1n this case.

Voice

@ 1 @ (373 BETE 1776 SEVEN 1336 UNITE 1777 WHOLE
o« E | 1. £ 1777 HALF
1777 QUARTER 77 MEMORY 1777 MAKE 1777 EXCHANGE 191 WORD 1777

POINT 1777 JUMP 1777 SKIP 1777 SCALE 1777 END 1777 NAME 1777
NUMBER 377 NINE 1775 ELGHT 1777 SIX 1777 FIVE 1777 FOUR 1777
'THREE 1777 TWO 1777 ONE 1777 ZERO 1777 ADD 1777 STORE 1777
LOAD 1777 LIST 1777 CORE 1777 SAVE 1777 BINARY 1777 READ 1777
MOVE 1777 DELETE 1777

1 @ (222 NUMBER 1409 QUARTER 1702 EXCHANGE 1676

(NINEY2 OCTAL 1777 DECIMAL 1777 BITE'1 ACCUMULATE 777 COMPARE
1737 INTERSECT 33 QUTPUT 1777 INPUT 1777 CONTROL 1777 OVERFLOW
35 ADDRESS 1777 CYCLE 1777 DIVIDE 1777 SEVEN 441 SUBTRACT 1777
DIRECTIVE 1777 REPLACE 1777 INSERT 1777)

I @ (123 ACCUMULATE 10808 COMPARE. 48 INTERSECT

1744 OVERFLOW 1742 REGISTER 1777 MULTIPLY 1777y
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2. Strident

Strident is an example of a feature that 1s relatively incon-
sistent In assigning sequences to vocabulary items. Neverthe-
less, Strident sends a great deal of information to the recog-
nitlion algorithm because there 1s good separation of words in
this tree and, after a few rounds of training, much of the
possible inconsistency has been learned and 1s represented in
the tree.
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STRIDENT

@ -1 (219 END 1400 THREE 329 ADD 538 HALF 1770 WORD 1772
LOAD 1774 WHOLE 1777 QUARTER 77 MEMORY 1777 MAKE 713 NAME 1777
NUMBER 377 NINE 1775 FIVE 1777 FOUR 1777 ONE 1777 CORE 1777

BINARY 1777 READ 331 MOVE 1773)
@ -1 (110 NUMBER 1490 DIVIDE 720 NINE 2 COMPARE 1737
OVERFLOW 31)
9 -1 (124 COMPARE 49 OVERFLOW 1742)
I -1 (124 REPLACE 17890 ADDRESS 1724 BITE 1 OUTPUT
1777 INPUT 1777 DIVIDE 1051)
1 -1 (106 ADDRESS 52 REPLACE 77
1 -1 (154 MAKE 1064 MOVE 4 BITE 1776 READ 1476 UNITE
1777 HALF 7 WORD 7 POINT 1777 END 377 EIGHT 1777 ADD 1277 LOAD
3 DELETE 731)
@ -1 (i17 DIRECTIVE 728 DECIMAL 210 OVERFLOW
4 OCTAL 1767 CONTROL 1777)
» -1 (184 MULTIPLY 1321)
1 -1 (109 ACCUMULATE 1200)
1 -1 (124 INSERT 328 ACCUMULATE 451)
1 -1 0 -1 1 -1 (1080 INTERSECT 420
© -1 1 -1 (108 INTERSECT 1800
i -1 (100 LIST 10@)
@ -1 © -1 (169 MULTIPLY 480>
i1 -1 (187 EXCHANGE 1676)
@ -1 (99 OCTAL 1@ DIRECTIVE 1)
1 -1 (106 ACCUMULATE 326 ADDRESS 1 INSERT
453) }
@ -1 (181 REGISTER 1200)
1 -1 8 -1 (108 REGISTER 42@)
i =1 @ -1 (101 REGISTER 140
1 -1 (183 INTERSECT 344)
1 -1 @ -1 (182 REGISTER 32)
, @ -1 (181 REGISTER 5)
1 -1 @ -1 (1805 QUARTER 1208 DECIMAL 1526)
@ -1 (i1 MULTIPLY 42)
1 -1 (103 INSERT 1884 INTERSECT 33)
1 -1 (108 LIST 1677) _
@ -1 (181 QUARTER 508)
8 -1 (181 MULTIPLY 14
1 -1 @ -1 (121 SCALE 688 SAVE 574 SEVEN 206 THREE 1477 TWO
1777 ZERO 1841)
@ -1 (108 CYCLE 773 SEVEN 441)
1 -1 (181 DIVIDE 6)
1 =1 €104 SIX 1446)
@ -1 (102 DIRECTIVE 4@ SUBTRACT 541)
1 -1 (185 SUBTRACT 1236)
@ -1 (188 DIRECTIVE 4)
1 -1 (100 DIRECTIVE 1080
1 @ -1 (123 SKIP 1777 SCALE 1177 STORE 17717
1 -1 (101 EXCHANGE 181)
@ -1 (118 SEVEN 1138 ZERO 736 JUMP 1777 SAVE 1283)
¢ -1 -(181 CYCLE 10084) .
1 -1 (168 DELETE 1876 SIX 331)
@ -1 (165 DECIMAL 48)
@ -1 (€121 DIRECTIVE 12)
1 -1 0 -1 (106 DECIMAL 1)
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